Rationalization Rain Gauge Density using the Stepwise Method

Authors

  • Sri Wahyuni Department of Water Resource Engineering, Faculty of Engineering, Universitas Brawijaya, Malang
  • Dian Sisinggih Department of Water Resource Engineering, Faculty of Engineering, Universitas Brawijaya, Malang
  • Willy Kriswardhana Department of Transport Technology and Economics, Budapest University of Technology and Economics, Budapest
  • Aprilia Widyaningrum Department of Water Resource Engineering, Faculty of Engineering, Universitas Brawijaya, Malang
  • Yumna Atika Cakra Nuswantara Mandiri Engineering Consultant, Depok

DOI:

https://doi.org/10.21776/ub.pengairan.2024.015.01.9

Keywords:

AWLR, CHIRPS, Rain gauge, Rationalization, Stepwise

Abstract

Establishing and maintaining hydrometeorological networks in sub-watersheds is challenging. An analysis of an established network of Rain Gauge Station (RGS) is provided in this study in the form of a comprehensive statistical framework. Hydrometeorological observations are monitored by this network, which aims to gather the most pertinent information while minimizing expenditures. The study location is at Ngasinan Hulu watershed (East Java, Indonesia), with ten rain gauge stations and one automatic water level recorder (AWLR). Errors in reviewing hydrological data in a watershed can cause the resulting data to be inaccurate. Therefore, to solve the problem of incorrect data, it is necessary to rationalize rain gauge stations. The rationalization for this study uses the Stepwise method. The results of the Stepwise-Enter method produce a combination of six rain gauge stations with measured rainfall data and a combination of four rain gauge stations with CHIRPS satellite rainfall data. Therefore, this combination of rain gauge stations is rational because it meets the classical assumption test, and the area is evenly distributed according to WMO standards.

References

B. T. Lambe and S. Kundapura, “Recent Changes in Hydrometeorological Extremes in the Bilate River Basin of Rift Valley, Ethiopia,” Journal of Hydrologic Engineering, 2023, doi: 10.1061/jhyeff.heeng-5853.

W. Zhang, M. Luo, S. Gao, W. Chen, V. Hari, and A. Khouakhi, “Compound Hydrometeorological Extremes: Drivers, Mechanisms and Methods,” Frontiers in Earth Science. 2021. doi: 10.3389/feart.2021.673495.

M. M. Rohde, “Floods and droughts are intensifying globally,” Nature Water, 2023, doi: 10.1038/s44221-023-00047-y.

G. Alimonti, L. Mariani, F. Prodi, and R. A. Ricci, “A critical assessment of extreme events trends in times of global warming,” European Physical Journal Plus. 2022. doi: 10.1140/epjp/s13360-021-02243-9.

B. Bonaccorso and D. J. Peres, “Analysis of Extreme Hydrometeorological Events,” Resources. 2022. doi: 10.3390/resources11060055.

F. Pourzand and I. Noy, “Catastrophic Droughts and Their Economic Consequences,” in Oxford Research Encyclopedia of Environmental Science, 2022. doi: 10.1093/acrefore/9780199389414.013.689.

D. N. Kumar and K. S. Raju, “Editorial: Hydrologic extremes,” Journal of Water and Climate Change. 2020. doi: 10.2166/wcc.2020.400.

Rajat et al., “Impact of the Hydro-Meteorological Disasters in the Upper Beas Basin in the Kullu Valley, Himachal Pradesh, India,” Journal of Geography, Environment and Earth Science International, 2023, doi: 10.9734/jgeesi/2023/v27i6691.

R. Villalobos-Herrera, S. Blenkinsop, S. B. Guerreiro, T. O’Hara, and H. J. Fowler, “Sub-hourly resolution quality control of rain-gauge data significantly improves regional sub-daily return level estimates,” Quarterly Journal of the Royal Meteorological Society, 2022, doi: 10.1002/qj.4357.

I. B. Šećerov, S. M. Savić, D. D. Milošević, D. M. Arsenović, D. M. Dolinaj, and S. B. Popov, “Progressing urban climate research using a high-density monitoring network system,” Environmental Monitoring and Assessment, 2019, doi: 10.1007/s10661-019-7210-0.

M. A. Meira et al., “Quality control procedures for sub-hourly rainfall data: An investigation in different spatio-temporal scales in Brazil,” Journal of Hydrology, 2022, doi: 10.1016/j.jhydrol.2022.128358.

A. K. Saha, “Editorial for the Special Issue on Aquatic Ecosystems and Water Resources,” Hydrology. 2023. doi: 10.3390/hydrology10060119.

S. S. Dubey, A. Kumar Singh, and U. Nath Tripathi, “Water Quality – A Review,” Asian Journal of Research in Chemistry, 2022, doi: 10.52711/0974-4150.2022.00067.

Y. Aubert, T. Legay, J. Verdonck, D. Brunel, and S. Delichere, “Use of spatial data for water resources monitoring,” in E3S Web of Conferences, 2022. doi: 10.1051/e3sconf/202234604008.

E. Rodríguez et al., “Combined Use of Local and Global Hydro Meteorological Data with Hydrological Models for Water Resources Management in the Magdalena - Cauca Macro Basin – Colombia,” Water Resources Management, 2020, doi: 10.1007/s11269-019-02236-5.

N. Nurhamidah, S. Hanwar, A. Junaidi, Februarman, and Sunaryo, “Effect of Missing Rainfall Data on the Uncertainty of Design Floods,” IOP Conference Series: Materials Science and Engineering, 2021, doi: 10.1088/1757-899x/1041/1/012007.

Y. Chen, D. Wang, D. Liu, B. Li, and A. Sharma, “Statistics in Hydrology,” Water (Switzerland). 2022. doi: 10.3390/w14101571.

A. Horváth, “The impact of data accuracy for efficient and feasible routing plans,” in Urban Freight Transportation Systems, 2019. doi: 10.1016/B978-0-12-817362-6.00006-9.

C. Zhang, A. Khan, S. Paternain, and A. Ribeiro, “Sufficiently Accurate Model Learning,” in Proceedings - IEEE International Conference on Robotics and Automation, 2020. doi: 10.1109/ICRA40945.2020.9197502.

E. Hidayah, G. Halik, and M. N. Trilita, “Rain Station Network Analysis in the Sampean Watershed: Comparison of Variations in Data Aggregation,” Geosfera Indonesia, 2022, doi: 10.19184/geosi.v7i1.29160.

S. Senan et al., “A study of the influence of rainfall datasets’ spatial resolution on stream simulation in Chaliyar River Basin, India,” Journal of Water and Climate Change, 2022, doi: 10.2166/wcc.2022.273.

L. O. Olang, M. Herrnegger, D. Wimmer, and J. Fürst, “A spatial database of hydrological and water resources information for the nyangores watershed of kenya,” in Hydrology and Water Resources Management in Arid, Semi-Arid, and Tropical Regions, 2019. doi: 10.4018/978-1-7998-0163-4.ch008.

R. Permatasari, A. Sabar, D. K. Natakusumah, and H. Samaulah, “Effects of watershed topography and land use on baseflow hydrology in upstream Komering South Sumatera, Indonesia,” International Journal of GEOMATE, 2019, doi: 10.21660/2019.59.4695.

S. A. Haromain, S. Wahyuni, and L. M. Limantara, “Rationalization of Rainfall Station Network in Welang Watershed Using Kagan-Rodda Method,” UKaRsT, 2022, doi: 10.30737/ukarst.v6i2.2829.

Y. Atika, S. Wahyuni, and L. M. Limantara, “Rasionalisasi Kerapatan Stasiun Hujan di Sub DAS Ngasinan Hulu Menggunakan Data Hujan Pengukuran dan Satelit,” Jurnal Teknik Pengairan, 2022, doi: 10.21776/ub.pengairan.2022.013.02.09.

S. R. Chalov, P. N. Terskii, L. E. Efimova, A. I. Terskaia, V. A. Efimov, and I. S. Danilovich, “Problems of hydrological monitoring in transboundary rivers of Eastern Europe (on the example of the Western Dvina,” Engineering survey, 2019, doi: 10.25296/1997-8650-2019-13-1-32-44.

R. Morbidelli, C. Saltalippi, J. Dari, and A. Flammini, “A review on rainfall data resolution and its role in the hydrological practice,” Water (Switzerland). 2021. doi: 10.3390/w13081012.

P. N. Mustain, D. A. Wulandari, H. Nugroho, and S. Suripin, “Rasionalisasi Pos Curah Hujan Menggunakan Metode Kagan di DAS Ciliwung untuk Operasi Bendungan Ciawi dan Sukamahi,” Bentang : Jurnal Teoritis dan Terapan Bidang Rekayasa Sipil, 2023, doi: 10.33558/bentang.v11i1.5614.

L. H. Zainuri, “The social movement against the human right: The case of massacre over the masters of sihir in the regency of banyuwangi 1998,” Academic Journal of Interdisciplinary Studies, 2018, doi: 10.2478/ajis-2018-0066.

S. Yamin and H. Kurniawan, “Statistik SPSS Complete: Teknik Analisis Statistik Terlengkap dengan Software SPSS,” Analisis Korespondensi Bab Analisis Diskriminan, 2009.

D. Priyatno, Belajar Alat Analisis Data dan Cara Pengolahannya dengan SPSS Praktis dan Mudah Dipahami. 2016.

S. Wahyuni, D. Sisinggih, and I. A. G. Dewi, “Validation of Climate Hazard Group InfraRed Precipitation with Station (CHIRPS) Data in Wonorejo Reservoir, Indonesia,” in IOP Conference Series: Earth and Environmental Science, 2021. doi: 10.1088/1755-1315/930/1/012042.

M. H. Le, V. Lakshmi, J. Bolten, and D. Du Bui, “Adequacy of Satellite-derived Precipitation Estimate for Hydrological Modeling in Vietnam Basins,” Journal of Hydrology, vol. 586, no. November 2019, p. 124820, 2020, doi: 10.1016/j.jhydrol.2020.124820.

A. G. Mengistu, T. A. Woldesenbet, and Y. D. Taddele, “Evaluation of observed and satellite-based climate products for hydrological simulation in data-scarce Baro -Akob River Basin, Ethiopia,” Ecohydrology and Hydrobiology, vol. 22, no. 2, pp. 234–245, 2022, doi: 10.1016/j.ecohyd.2021.11.006.

Q. Wang, J. Xia, D. She, X. Zhang, J. Liu, and Y. Zhang, “Assessment of four latest long-term satellite-based precipitation products in capturing the extreme precipitation and streamflow across a humid region of southern China,” Atmospheric Research, 2021, doi: 10.1016/j.atmosres.2021.105554.

D. Harisuseno*, E. Suhartanto, and D. M. Cipta, “Rainfall-Streamflow Relationship using Stepwise Method as a Basis for Rationalization of Rain Gauge Network Density,” International Journal of Recent Technology and Engineering (IJRTE), 2020, doi: 10.35940/ijrte.e6617.018520.

V. Popovych and I. Dunaieva, “Assessment of the GPM IMERG and CHIRPS precipitation estimations for the steppe part of the Crimea,” Meteorology Hydrology and Water Management, 2021, doi: 10.26491/mhwm/133088.

A. K. Mishra, “Effect of rain gauge density over the accuracy of rainfall: A case study over Bangalore, India,” SpringerPlus, 2013, doi: 10.1186/2193-1801-2-311.

O. Odebiri et al., “Mapping sub-surface distribution of soil organic carbon stocks in South Africa’s arid and semi-arid landscapes: Implications for land management and climate change mitigation,” Geoderma Regional, p. e00817, May 2024, doi: 10.1016/j.geodrs.2024.e00817.

Downloads

Published

2024-05-31

How to Cite

Wahyuni, S., Sisinggih, D., Kriswardhana, W., Widyaningrum, A., & Atika , Y. (2024). Rationalization Rain Gauge Density using the Stepwise Method. Jurnal Teknik Pengairan: Journal of Water Resources Engineering, 15(1), 88–94. https://doi.org/10.21776/ub.pengairan.2024.015.01.9

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >>