Flood Prone Mapping based on Surface Runoff Analysis using the SWAT Model at the Upstream Side of Brantas


  • Devi Nurcahyaningtyas Department of Water Resource Engineering, Universitas Brawijaya, Malang
  • Donny Harisuseno Department of Water Resource Engineering, Universitas Brawijaya, Malang
  • Jadfan Sidqi Fidari Department of Water Resource Engineering, Universitas Brawijaya, Malang




ArcSWAT, Flood hazard mapping, Mitigation, Surface runoff


Currently, Batu City is experiencing rapid development both in terms of population and the amount of land building. Where development is uncontrolled and not balanced by reasonable conservation efforts, it will cause water resource problems such as flooding. So, it is necessary to understand flow patterns better as an actual effort in effective water management and flood hazard mitigation. This study aims to obtain a map of flood-prone areas in the Brantas sub-watershed upstream of Batu City. The primary methodology adopted in this research entails the examination of surface runoff through the utilization of the ArcSWAT program, followed by the analysis of pertinent parameters, including rainfall, land use, soil type, land slope, river density, and surface runoff. Then, scoring and weighting are done before overlaying each parameter to get a flood vulnerability map at the research location. The results of this study indicate that the mapping of flood-prone areas at the most significant research location is at a high level of flood vulnerability of 78.31 km2 or 52.22% of the total area of the watershed.


T. Ferijal, “Predicting Runoff and Erosion Rate from Krueng Jreu Subwatershed Using SWAT Model,” Agrista, vol. 16, no. 1, pp. 29–38, 2012.

D. Harisuseno and M. Bisri, Spatial Runoff (Surface Runoff in Spatial Dimension). UB Press, 2017.

K. Darmawan, Hani’ah, and A. Suprayogi, “Analysis of Flood Hazard Levels in Sampang District Using Overlay Method with Scoring Based on Geographic Information Systems,” J. Geod. Undip, vol. 6, no. 1, pp. 31–40, 2017.

N. Nuryanti, J. L. Tanesib, and A. Warsito, “Mapping Flood-Prone Areas Using Remote Sensing and Geographic Information Systems in Kupang Timur District, Kupang Regency, East Nusa Tenggara Province,” J. Phys. Phys. Sci. Its Appl., vol. 3, no. 1, pp. 73–79, 2018, doi: 10.35508/fisa.v3i1.604.

D. Ainur, “Mapping the Distribution of Erosion Hazard Index and Land Use Direction in Upper Brantas Sub Watershed, Batu City, Using Geographic Information System,” 2021.

I. H. O. Sitorus, F. Bioresita, and N. Hayati, “Analyzing the Flood Prone Level in Bandung Regency Using Weighting and Scoring Methods,” ITS Eng. J., vol. 10, no. 1, 2021, doi: 10.12962/j23373539.v10i1.60082.

M. Limantara, Hydrological Engineering (R. Indah (ed.)). PENERBIT ANDI, 2018.

D. K. Arya, “Modul Pengerjaan Model Hidrologi Menggunakan Model Semi-Distributed Soil And Water Assessment Tool (SWAT) Doni Khaira Arya,” 2003.

M. L. Egigu, A. Moges, and H. K. Addis, “Hydro-sediment responses to management options under current and future climate change scenarios in Maybar watershed, South Wollo Zone, Ethiopia,” Environ. Challenges, vol. 15, p. 100896, Apr. 2024, doi: 10.1016/j.envc.2024.100896.

Y. P. S. Pane, M. Sholichin, and R. Asmaranto, “Analisa Erosi di DAS Kali Lamong Menggunakan Pendekatan ArcSWAT,” J. Teknol. dan Rekayasa Sumber Daya Air, vol. 1, no. 2, pp. 876–889, 2021, doi: 10.21776/ub.jtresda.2021.001.02.44.

E. Suhartanto, E. N. Cahya, and L. Maknun, “Analysis of Runoff Based on Rainfall using Artificial Neural Network (ANN) Model in Upper Brantas Sub Watershed,” Water Resour. Eng. J., vol. 10, no. 2, pp. 134–144, 2019, doi: 10.21776/ub.pengairan.2019.010.02.07.

N. Nurhamidah, A. Junaidi, and M. Kurniawan, “Review of Land Use Change on Surface Runoff. Case Study: Batang Arau Padang Watershed,” J. Civ. Eng., vol. 14, no. 2, p. 131, 2018, doi: 10.25077/jrs.14.2.131-138.2018.

A. G. Ramadhan, H. H. Handayani, and M. R. Darminto, “Analysis of Weighting Flood Prone Map Method and Flood Inundation Map with NDWI Method for Flood Event (Case Study: Sidoarjo District) Alkindi,” Geoid, vol. 17, no. 2, p. 232, 2022, doi: 10.12962/j24423998.v17i2.8763.

D. A. C. Angelina, N. M. Trigunasih, P. P. K. Wiguna, and I. W. Sedana, “Analisis Spasial Faktor Prioritas Daerah Rawan Banjir di Kota Denpasar Provinsi Bali,” J. Agroekoteknologi Trop. (Journal Trop. Agroecotechnology), vol. 11, no. 2, pp. 145–152, 2022.

S. W. A. Y. P. A. Sukmono, “Study of River Density and Land Cover Index using Remote Sensing (Case Study: Juana Watershed),” I Wayan Eka Swastikayana, p42, vol. 4, no. 1, p. 42, 2016.

A. Z. Ramdani and R. Haribowo, “Analisa Pemodelan Kualitas Air Sub DAS Lesti Dengan Aplikasi ARCSWAT 2012,” J. Tek. Pengair., vol. 9, no. 2, pp. 138–151, Nov. 2018, doi: 10.21776/ub.pengairan.2018.009.02.7.

Q. Wang, G. Zhao, and R. Zhao, “Resilient urban expansion: Identifying critical conflict patches by integrating flood risk and land use predictions: A case study of Min Delta Urban Agglomerations in China,” Int. J. Disaster Risk Reduct., vol. 100, p. 104192, Jan. 2024, doi: 10.1016/j.ijdrr.2023.104192.

Tarkono et al., “Pemetaan Daerah Potensi Rawan Banjir Dengan Sistem Informasi Geografi Metode Weighted Overlay Di Kelurahan Keteguhan,” Buguh J. Pengabdi. Kpd. Masy., vol. 1, no. 3, pp. 9–20, 2021, doi: 10.23960/buguh.v1n3.138.




How to Cite

Nurcahyaningtyas, D., Harisuseno, D., & Fidari, J. S. (2024). Flood Prone Mapping based on Surface Runoff Analysis using the SWAT Model at the Upstream Side of Brantas. Jurnal Teknik Pengairan: Journal of Water Resources Engineering, 15(1), 37–49. https://doi.org/10.21776/ub.pengairan.2024.015.01.4




Most read articles by the same author(s)

1 2 3 > >>