Pemodelan Numerik Bangunan Peredam Energi Bendungan Pomalaa dengan Analisa Komputasi Fluida Dinamis
DOI:
https://doi.org/10.21776/ub.pengairan.2021.012.02.06Keywords:
Bilangan Froude, ¬Brier-Skill Score, Computational Fluid Dynamics, Efisiensi peredaman, Peredam energiAbstract
Pada pengujian model fisik pelimpah Bendungan Pomalaa, peredam energi model seri 4 yang memiliki elevasi dasar +41,00 m telah mampu meredam energi aliran dengan baik pada debit Q100th, Q1000th, dan QPMF, namun perlu dicoba alternatif desain peredam energi yang lebih efektif dan efisien. Metode yang digunakan adalah simulasi model numerik berbasis Computational Fluid Dynamics (CFD), kemudian hasilnya akan diverifikasi dengan model fisik menggunakan Brier-Skill Score (BSS). Setelah itu, dilakukan alternatif desain berupa variasi elevasi dasar peredam energi, yaitu +42,00 m; +43,00 m; dan +44,00 m, kemudian dipilih model terbaik sebagai rekomendasi dari hasil simulasi. Hasil verifikasi model numerik menggunakan BSS menunjukkan bahwa model numerik cukup mampu untuk merepresentasikan model fisik. Hasil simulasi terbaik adalah peredam energi dengan elevasi dasar +42,00 m dengan efisiensi peredaman pada Q100th, Q1000th, dan QPMF berturut-turut sebesar 93,846%, 85,915%, dan 83,201%. Kemudian pada debit Q100th, Q1000th, dan QPMF di bagian hilir memiliki nilai bilangan Froude 0,770, 0,995, dan 1,472.
In the physical model testing Pomalaa Dam spillway, the series 4 energy dissipator which has a base elevation of +41,00 m has been able to dissipate the flow energy well at the Q100y, Q1000y, and QPMF, but it is necessary to try alternative designs that more effective and efficient. The method used is a numerical model simulation using an application based on Computational Fluid Dynamics (CFD), then the result will be verified with physical model using Brier-Skill Score (BSS). After that, an alternative design was carried out in the form of a variation in the base elevation of the energy dissipator, that are +42,00 m; +43,00 m; and +44,00 m, then the best model is selected as a recommendation from the simulation result. The result of the verification of the numerical model using BSS show that numerical model is quite capable of representing the physical model. The best simulation result is an energy dissipator with a base elevation of +42,00 with efficiency of energy dissipation at Q100y, Q1000y, and QPMF respectively 93,846%, 85,915%, and 83,201%. Then Q100y, Q1000y, and QPMF at the downstream have Froude number value respectively 0,770, 0,995, and 1,472.
References
Fathi-Moghadam, Manoochehr, Sadegh Haghighipour, Babak Lashkar-Ara, and Peyman Aghtouman. 2011. “Reduction of Stilling Basin Length with Tall End Sill.” Journal of Hydrodynamics 23(4): 498–502.
Fluent, Ansys. 2013. “Ansys Fluent Theory Guide.” ANSYS Inc., USA.
Hatomi, Fasri. 2011. “Analisis CFD Turbin Pembangkit Listrik Tenaga Arus Laut Pada Kapasitas 1,2 KW.” Universitas Indonesia.
Mansoori, Abbas, Shadi Erfanian, and Farhad Khamchin Moghadam. 2017. “A Study of the Conditions of Energy Dissipation in Stepped Spillways with Λ-Shaped Step Using FLOW-3D.” Civil Engineering Journal 3(10): 856.
Peterka, A. J. 1984. “Hydraulic Design of Stilling Basins and Energy Dissipators.” Water resources technical publication - US department of the interior.
Rebollo, Juan José, David López, Tamara Ramos, and Luis Garrote. 2018. “Energy Dissipation Structures: Influence of Aeration in Supercritical .” Proceedings 7(1): 5.
Subramanya, K. 1982. “Flow in Open Channels. Volumes 1 and 2.”
Tuakia, Firman. 2008. Dasar-Dasar CFD Menggunakan Fluent. Cet. 1. Bandung: Informatika.
van Rijn, L. C. et al. 2003. “The Predictability of Cross-Shore Bed Evolution of Sandy Beaches at the Time Scale of Storms and Seasons Using Process-Based Profile Models.” Coastal Engineering.
Yen, Ben Chie. 2002. “Channel Flow Resistance: Centennial of Manning’s Formula.” Water Resources Publications, LLC., Highlands Ranch, Colorado, U.S.A.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Delivean Rakha Dermawan, Evi Nur Cahya, Dian Sisinggih

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).